The HDAC Inhibitor LAQ824 Enhances Epigenetic Reprogramming and In Vitro Development of Porcine SCNT Embryos.

نویسندگان

  • Jun-Xue Jin
  • Sanghoon Lee
  • Anukul Taweechaipaisankul
  • Geon A Kim
  • Byeong Chun Lee
چکیده

BACKGROUND/AIMS Hypoacetylation caused by aberrant epigenetic nuclear reprogramming results in low efficiency of mammalian somatic cell nuclear transfer (SCNT). Many epigenetic remodeling drugs have been used in attempts to improve in vitro development of porcine SCNT embryos. In this study, we examined the effects of LAQ824, a structurally novel histone acetylase inhibitor, on the nuclear reprogramming and in vitro development of porcine SCNT embryos. METHODS LAQ824 treatment was supplemented during the culture of SCNT embryos. The reprogramming levels were measured by immunofluorescence and quantified by image J software. Relative expression levels of 18 genes were analyzed by quantitative real-time PCR. RESULTS 100 nM LAQ824 treatment of post-activation SCNT embryos for 24 h significantly improved the subsequent blastocyst formation rate. The LAQ824 treatment enhanced histone 3 lysine 9 (H3K9) levels, histone 4 lysine 12 (H4K12) levels, and reduced global DNA methylation levels as well as anti-5-methylcytosine (5-mC) at the pseudo-pronuclear and 2-cell stages. Furthermore, LAQ824 treatment positively regulated the mRNA expression of genes for histone acetylation (HAT1, HDAC1, 2, 3, and 6), DNA methylation (DNMT1, 3a and 3b), development (Pou5f1, Nanog, Sox2, and GLUT1) and apoptosis (Bax, Bcl2, Caspase 3 and Bak) in blastocysts. CONCLUSION Optimum exposure (100 nM for 24 h) to LAQ824 post-activation improved the in vitro development of porcine SCNT embryos by enhancing levels of H3K9 and H4K12, reducing 5-mC, and regulating gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-19: Identifying and Overcoming an Epigenetic Barrier for SCNT Reprogramming

Background Despite successful cloning of many mammalian species, the cloning efficiency is extremely low compared to that of IVF raising the possibility of the existence of epigenetic barrier preventing successful cloning. MaterialsAndMethods Using comparative transcriptome analysis comparing transcriptomes of IVF and SCNT embryos and that of donor cells, we identified epigenetic barrier and fi...

متن کامل

P-128: The Effect of DNA Methyl Transferase1 Inhibitor (RG108) on DNA Methylation Pattern of Cloned Mouse Embryos

Background: In somatic cell nuclear transfer (SCNT) method of cloning, transferred nucleus should be dedifferentiated from differentiated state to embryonic state. Molecular analysis showed that the reprogramming in the transferred nucleus was incomplete and cloned embryos have epigenetic abnormalities such as high DNA methylations levels. Since methylation in pre-implantation embryos has a cri...

متن کامل

DOT1L inhibitor improves early development of porcine somatic cell nuclear transfer embryos

Incomplete epigenetic reprogramming of the genome of donor cells causes poor early and full-term developmental efficiency of somatic cell nuclear transfer (SCNT) embryos. Previous research indicate that inhibition of the histone H3 K79 methyltransferase DOT1L, using a selective pharmacological inhibitor EPZ004777 (EPZ), significantly improved reprogramming efficiency during the generation of mo...

متن کامل

Oxamflatin Significantly Improves Nuclear Reprogramming, Blastocyst Quality, and In Vitro Development of Bovine SCNT Embryos

Aberrant epigenetic nuclear reprogramming results in low somatic cloning efficiency. Altering epigenetic status by applying histone deacetylase inhibitors (HDACi) enhances developmental potential of somatic cell nuclear transfer (SCNT) embryos. The present study was carried out to examine the effects of Oxamflatin, a novel HDACi, on the nuclear reprogramming and development of bovine SCNT embry...

متن کامل

O-18: Epigenetic Modification of Cloned Embryo Development; State of ART

Background: At the outset of the somatic cell nuclear transfer (SCNT) process, the chromatin structure of the somatic cell which governs its state of differentiation undergoes dramatic changes, called reprogramming, and is compelled back to the embryonic stage. However, the overall epigenetic makeup of the resultant cloned embryos has been acknowledged far different from the fertilized embryos....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 41 3  شماره 

صفحات  -

تاریخ انتشار 2017